Embark on a journey through the intricacies of neural networks using PyTorch, a powerful framework favored by professionals and researchers alike. The course begins with an in-depth exploration of classification models, where you'll learn to tackle different types of classification problems, utilize confusion matrices, and interpret ROC curves. As you progress, you'll engage in hands-on exercises to prepare data, build dataset classes, and construct network classes tailored for multi-class classification.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Building and Training Neural Networks with PyTorch
Ce cours fait partie de Spécialisation PyTorch Ultimate 2024 - From Basics to Cutting-Edge
Instructeur : Packt - Course Instructors
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Build and train neural networks using PyTorch for various tasks.
Implement classification models with multi-class, multi-label datasets, and CNNs for image and audio classification.
Apply object detection techniques using the YOLO algorithm.
Explore neural style transfer, transfer learning, and implement RNNs and LSTM networks.
Compétences que vous acquerrez
- Catégorie : Recurrent Neural Network (RNN)
- Catégorie : PyTorch (Machine Learning Library)
- Catégorie : CNN
- Catégorie : YOLO
- Catégorie : Classification Models
Détails à connaître
Ajouter à votre profil LinkedIn
septembre 2024
4 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 7 modules dans ce cours
In this module, we will delve into the realm of classification models, focusing on their types, evaluation metrics, and implementation. You will learn about key concepts such as the confusion matrix and ROC curve, and engage in practical exercises to build and evaluate multi-class classification models.
Inclus
16 vidéos2 lectures
In this module, we will explore the power of convolutional neural networks (CNNs) in image classification tasks. You will learn about the CNN architecture, preprocess images for optimal results, and gain hands-on experience in implementing binary and multi-class image classification models.
Inclus
11 vidéos
In this module, we will focus on using convolutional neural networks for audio classification. You will get a comprehensive introduction to the topic, learn how to conduct exploratory data analysis on audio data, and engage in practical exercises to build and evaluate your own audio classification models.
Inclus
5 vidéos1 devoir
In this module, we will dive into object detection using convolutional neural networks. You will learn about essential accuracy metrics, implement popular object detection algorithms like YOLO, and utilize GPU resources for training and inference to build robust object detection models.
Inclus
13 vidéos
In this module, we will cover the fascinating topic of neural style transfer. You will understand the underlying principles, implement style transfer algorithms through coding, and explore various creative applications to transform images in unique ways.
Inclus
3 vidéos1 devoir
In this module, we will delve into pre-trained networks and transfer learning. You will learn how to leverage pre-trained models, implement transfer learning techniques through coding exercises, and understand the advantages of applying these concepts to various machine learning tasks.
Inclus
3 vidéos
In this module, we will introduce recurrent neural networks (RNNs) and their applications. You will explore the basics of RNNs, implement Long Short-Term Memory (LSTM) networks through practical coding exercises, and engage in tasks designed to deepen your understanding of these powerful models.
Inclus
4 vidéos1 lecture2 devoirs
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Software Development
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.