Embark on a comprehensive journey to master image segmentation with PyTorch, designed for both beginners and advanced learners. This course offers a detailed exploration of image segmentation, starting with foundational concepts and moving towards advanced techniques using real-world projects.
Expérience recommandée
Ce que vous apprendrez
Apply multi-class semantic segmentation using PyTorch to real-world datasets.
Analyze the architecture and functionality of UNet and FPN models for effective image segmentation.
Evaluate and select appropriate loss functions and evaluation metrics for optimizing deep learning models.
Compétences que vous acquerrez
- Catégorie : Image Segmentation
- Catégorie : Computer Vision
- Catégorie : Deep Learning
- Catégorie : PyTorch (Machine Learning Library)
Détails à connaître
Ajouter à votre profil LinkedIn
septembre 2024
1 devoir
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 4 modules dans ce cours
In this module, we will establish the foundational setup required for the course. We will define image segmentation, outline the course scope, and walk through the system setup. Additionally, we will cover how to access the necessary materials and configure the Conda environment for working with PyTorch.
Inclus
5 vidéos1 lecture
In this module, we will explore the basics of PyTorch, a powerful deep learning framework. We will delve into tensor operations, computational graphs, and the construction of neural network models. This section will equip you with essential skills for developing and training models in PyTorch.
Inclus
19 vidéos
In this module, we will delve into Convolutional Neural Networks (CNNs) and their applications in computer vision. We will cover the basics of CNN architecture, image preprocessing techniques, and the debugging of neural networks. This section provides a comprehensive introduction to CNNs and their practical implementations.
Inclus
6 vidéos
In this module, we will focus on semantic segmentation, a critical task in image analysis. We will explore various neural network architectures, upsampling techniques, and loss functions. Additionally, we will cover data preparation, model training, and evaluation metrics to ensure accurate and effective segmentation results.
Inclus
15 vidéos1 devoir
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
Sungkyunkwan University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.