University of Minnesota
Social Determinants of Health: Methodological Opportunities

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
University of Minnesota

Social Determinants of Health: Methodological Opportunities

Daniel J. Pesut, Ph.D., RN, FAAN
Karen A. Monsen, PhD, RN, FAMIA, FNAP, FAAN

Instructeurs : Daniel J. Pesut, Ph.D., RN, FAAN

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Débutant
Aucune connaissance prérequise
17 heures pour terminer
3 semaines à 5 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Débutant
Aucune connaissance prérequise
17 heures pour terminer
3 semaines à 5 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Compétences que vous acquerrez

  • Catégorie : Health Informatics
  • Catégorie : Data Analysis
  • Catégorie : Health Equity
  • Catégorie : Methodology
  • Catégorie : Data Visualization

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Évaluations

8 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation Social Determinants of Health: Data to Action
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable
Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 5 modules dans ce cours

The purpose of this module is to examine community-based participatory research (CBPR) and evaluate its potential applications in data-to-action initiatives. Lesson one will define CBPR, as we discuss its origin and relation to collective impact. We will also review the goals, purpose, benefits and characteristics of CBPR as we compare it to traditional research methods. In lesson two, we will explore potential measurement strategies for analyzing CBPR outcomes and data-to-action interventions. We will also consider how CBPR success is measured and how data can be used to amplify community voices.

Inclus

3 vidéos4 lectures2 devoirs1 sujet de discussion5 plugins

This module will introduce the principles of team science and examine how team science can be used to enhance data-to-action initiatives. In lesson one, we will define team science, as we discuss how it is related to collective impact and CBPR. We will also review recommendations made by the National Academies Committee on the Science of Team Science for improving team science effectiveness. Lesson two will focus on the opportunities and challenges for team science in communities, as we further discuss incorporating community perspectives into team science research. We will also evaluate how to measure team science outcomes, as we consider how team science can add perspective and voice to data.

Inclus

2 vidéos4 lectures2 devoirs1 sujet de discussion3 plugins

This module will focus on the importance of community partnerships in collecting and analyzing community-level data that can be integrated into data-to-action initiatives. Lesson one will define key terms, and introduce the concept of whole-person health. We will also explore how community data can be used to advocate, influence and create policy to support health equity. In lesson two, we will examine the use of simplified plain language in the context of health literacy, as we discuss how to assess the usability of community-validated plain language terms. Lesson three will introduce the MyStrengths+MyHealth assessment, as we review the implications of collecting community-based social determinant of health data. Finally in lesson four, we will evaluate a community-level data exemplar, as we consider how to translate whole person health and community-level data into community-driven health initiatives.

Inclus

5 vidéos8 lectures2 devoirs1 sujet de discussion

In this module, we will examine informatics as a potential methodology and resource to inform data-to-action initiatives. Lesson one will define key concepts including informatics, knowledge complexity, and knowledge management. Building on these concepts, we will investigate the levels of knowledge management proposed by Verna Allee. We will also consider the different perspectives on the proposed creation of a new social informatics specialty. Building on our understanding of knowledge management, in lesson two, we will explore knowledge representation structures. We will also analyze the use of publicly available population health records as contextual information to manage knowledge and data for action to reduce health disparities. In addition, we will evaluate knowledge representation structures of evidence-based social determinants of health interventions. Finally, we will explore some informatics applications including the Population Health Record and the WHO Health Equity Assessment Toolkit (HEAT).

Inclus

2 vidéos4 lectures2 devoirs1 sujet de discussion3 plugins

This module will focus on analyzing, displaying and interpreting social determinants of health data, with a particular focus on comparing health outcomes by groups. Lesson one will provide an overview of ANOVA analysis and line graph visualization. In lesson two, we will learn how to conduct ANOVA analyses and create line graphs in R. Using the NHANES dataset, we will compare the mean Hgb a1c by education level. Using the Omaha System dataset, we will compare the mean change in status by number of problems. Finally, we will discuss how to interpret the results of our analysis as we visualize our findings using line graphs.

Inclus

2 vidéos4 lectures1 évaluation par les pairs1 sujet de discussion1 laboratoire non noté3 plugins

Instructeurs

Daniel J. Pesut, Ph.D., RN, FAAN
University of Minnesota
7 Cours6 562 apprenants
Karen A. Monsen, PhD, RN, FAMIA, FNAP, FAAN
University of Minnesota
9 Cours46 079 apprenants

Offert par

Recommandé si vous êtes intéressé(e) par Health Informatics

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions