e.g. This is primarily aimed at first- and second-year undergraduates interested in engineering or science, along with high school students and professionals with an interest in programmingGain the skills for building efficient and scalable data pipelines. Explore essential data engineering platforms (Hadoop, Spark, and Snowflake) as well as learn how to optimize and manage them. Delve into Databricks, a powerful platform for executing data analytics and machine learning tasks, while honing your Python data science skills with PySpark. Finally, discover the key concepts of MLflow, an open-source platform for managing the end-to-end machine learning lifecycle, and learn how to integrate it with Databricks.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Spark, Hadoop, and Snowflake for Data Engineering
Ce cours fait partie de Spécialisation Applied Python Data Engineering
Instructeurs : Noah Gift
8 833 déjà inscrits
Inclus avec
(42 avis)
Expérience recommandée
Ce que vous apprendrez
Create scalable data pipelines (Hadoop, Spark, Snowflake, Databricks) for efficient data handling.
Optimize data engineering with clustering and scaling to boost performance and resource use.
Build ML solutions (PySpark, MLFlow) on Databricks for seamless model development and deployment.
Implement DataOps and DevOps practices for continuous integration and deployment (CI/CD) of data-driven applications, including automating processes.
Compétences que vous acquerrez
- Catégorie : Big Data
- Catégorie : Python Programming
- Catégorie : Information Engineering
- Catégorie : Apache Hadoop
- Catégorie : Apache Spark
Détails à connaître
Ajouter à votre profil LinkedIn
21 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 4 modules dans ce cours
In this module, you will learn how to work with different data engineering platforms, such as Hadoop and Spark, and apply their concepts to real-world scenarios. First, you will explore the fundamentals of Hadoop to store and process big data. Next, you will delve into Spark concepts, distributed computing, deferred execution, and Spark SQL. By the end of the week, you will gain hands-on experience with PySpark DataFrames, DataFrame methods, and deferred execution strategies.
Inclus
10 vidéos9 lectures7 devoirs2 sujets de discussion2 laboratoires non notés
In this module, you will explore the Snowflake platform, gaining insights into its architecture and key concepts. Through hands-on practice in the Snowflake Web UI, you'll learn to create tables, manage warehouses, and use the Snowflake Python Connector to interact with tables. By the end of this week, you'll solidify your understanding of Snowflake's architecture and practical applications, emerging with the ability to effectively navigate and leverage the platform for data management and analysis.
Inclus
8 vidéos5 lectures6 devoirs
In this module, you will practice the essential skills for seamlessly managing machine learning workflows using Databricks and MLFlow. First, you will create a Databricks workspace and configure a cluster, setting the stage for efficient data analysis. Next, you will load a sample dataset into the Databricks workspace using the power of PySpark, enabling data manipulation and exploration. Finally, you will install MLFlow either locally or within the Databricks environment, gaining the ability to orchestrate the entire machine learning lifecycle. By the end of this week, you will be able to craft, track, and manage machine learning experiments within Databricks, ensuring precision, reproducibility, and optimal decision-making throughout your data-driven journey.
Inclus
16 vidéos7 lectures4 devoirs1 laboratoire non noté
In this module, you will explore the concepts of Kaizen, DevOps, and DataOps and how these methodologies synergistically contribute to efficient and seamless data engineering workflows. Through practical examples, you will learn how Kaizen's continuous improvement philosophy, DevOps' collaborative practices, and DataOps' focus on data quality and integration converge to enhance the development, deployment, and management of data engineering platforms. By the end of this week, you will have the knowledge and perspective needed to optimize data engineering processes and deliver scalable, reliable, and high-quality solutions.
Inclus
21 vidéos6 lectures4 devoirs1 laboratoire non noté
Instructeurs
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
Coursera Instructor Network
University of California, Davis
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
Affichage de 3 sur 42
42 avis
- 5 stars
52,38 %
- 4 stars
19,04 %
- 3 stars
11,90 %
- 2 stars
4,76 %
- 1 star
11,90 %
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.