The course extends the fundamental tools in "Machine Learning Foundations" to powerful and practical models by three directions, which includes embedding numerous features, combining predictive features, and distilling hidden features. [這門課將先前「機器學習基石」課程中所學的基礎工具往三個方向延伸為強大而實用的工具。這三個方向包括嵌入大量的特徵、融合預測性的特徵、與萃取潛藏的特徵。]

Enjoy unlimited growth with a year of Coursera Plus for $199 (regularly $399). Save now.

(35 reviews)
Skills you'll gain
Details to know

Add to your LinkedIn profile
4 assignments
See how employees at top companies are mastering in-demand skills

There are 16 modules in this course
more robust linear classification solvable with quadratic programming
What's included
5 videos4 readings
another QP form of SVM with valuable geometric messages and almost no dependence on the dimension of transformation
What's included
4 videos
kernel as a shortcut to (transform + inner product): allowing a spectrum of models ranging from simple linear ones to infinite dimensional ones with margin control
What's included
4 videos
a new primal formulation that allows some penalized margin violations, which is equivalent to a dual formulation with upper-bounded variables
What's included
4 videos1 assignment
soft-classification by an SVM-like sparse model using two-level learning, or by a "kernelized" logistic regression model using representer theorem
What's included
4 videos
kernel ridge regression via ridge regression + representer theorem, or support vector regression via regularized tube error + Lagrange dual
What's included
4 videos
blending known diverse hypotheses uniformly, linearly, or even non-linearly; obtaining diverse hypotheses from bootstrapped data
What's included
4 videos
"optimal" re-weighting for diverse hypotheses and adaptive linear aggregation to boost weak algorithms
What's included
4 videos1 assignment
recursive branching (purification) for conditional aggregation of simple hypotheses
What's included
4 videos
bootstrap aggregation of randomized decision trees with automatic validation
What's included
4 videos
aggregating trees from functional + steepest gradient descent subject to any error measure
What's included
4 videos
automatic feature extraction from layers of neurons with the back-propagation technique for stochastic gradient descent
What's included
4 videos1 assignment
an early and simple deep learning model that pre-trains with denoising autoencoder and fine-tunes with back-propagation
What's included
4 videos
linear aggregation of distance-based similarities to prototypes found by clustering
What's included
4 videos
linear models of items on extracted user features (or vice versa) jointly optimized with stochastic gradient descent for recommender systems
What's included
4 videos
summary from the angles of feature exploitation, error optimization, and overfitting elimination towards practical use cases of machine learning
What's included
4 videos1 assignment
Instructor

Offered by
Explore more from Machine Learning
Status: Free TrialJohns Hopkins University
Status: Free TrialFractal Analytics
Status: Free TrialFractal Analytics
Status: Free TrialCoursera
Why people choose Coursera for their career




Frequently asked questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
More questions
Financial aid available,




