AS
Apr 18, 2020
Very good course to give you deep insight about how to enhance your algorithm and neural network and improve its accuracy. Also teaches you Tensorflow. Highly recommend especially after the 1st course
HD
Dec 5, 2019
I enjoyed it, it is really helpful, id like to have the oportunity to implement all these deeply in a real example.
the only thing i didn't have completely clear is the barch norm, it is so confuse
By Sebastián J C
•Sep 15, 2020
Only detail is that programming exercises are way too simple, copy-paste kind of things. I could understand that being the case for the first, introductory course, but it would've been nice to have a little bit more of a challenge to get used to the programming implementation details. Also, it is outdated in the sense that you are using version 1 of TensorFlow.
By Shuai X
•Dec 15, 2017
This course subsumes relevant contents in Stanford Machine Learning Course. Some useful addition to the Stanford Course are briefs on Gradient Descent With Momentum, RMSdrop and Adam as well as elementary practices on Tensorflow. People with basic knowledge of linear algebra can complete this course in a day (i.e. 10 hours) by skipping less important videos.
By Crawford F
•Dec 7, 2020
The final lab is somewhat confusing in that the TensorFlow syntax is poorly explained and the results for the final module would be well served by noting what your first epoch should be as well as the 100th (I spent a long time trying to find non-existant bugs because I had misread the output of my model as epoch 100!!).
Other than that excellent as ever.
By Satyam k
•Aug 18, 2020
This course provide very deep and good knowledge that how to increase speed of your neural network and how we do hyperparameter tunning. But one thing lags in this course is that it won't provide much knowledge about frameworks like Tensorflow and people face difficulty while doing programming exersice because tensorflow knowledge is not provide in depth
By Vishak A
•May 14, 2020
I wish more of TensorFlow had been included in the course content. Aside of that major point, I wish the complex mathematical portions had been explained with more precision and codes like "X[0][0]" had been explained with more precision as well. But overall, I think it was hugely worth learning all the thoroughly taught concepts and I am very grateful.
By Chinmay h
•May 8, 2020
Topics are explained very well. There may be a false sense of accomplishment coming after doing the assignments, which are pretty straightforward. I am going to add in personal tasks which might help me understand the topics more in depth. On a similar front, could you add in a video explaining what to do next. And I don't mean the next course in line.
By jim
•Nov 8, 2017
gain quite a lot of insight into the deep neural network, the tunning, regularization and so on.
one remark on this course, we talked a lot about tunning processes in wk3. However, not much practical exercises on this part, e.g. we didn't try to implement the batch normalization ourselves and to incorporate batch normalization with other parameters etc.
By Aurangazeeb A K
•Sep 30, 2019
Although I loved this course, I believe there are certain parts that could be broken down into even simpler intuitions. If such a change a possible, this course will be the best one out there. Anyway, I really enjoyed the course and it was a great learning experience. Tensorflow was introduced very finely and it aroused my curiousity to learn more.
By Manish M
•Mar 22, 2020
Really informative course to learn about the various kinds of optimizations and the differences between the optimization techniques. Learnt how to tune the hyper parameters for effective training . Also got a chance to learn about mini-batches and the corresponding gradient descent and the difference between batch and mini-batch gradient descent.
By Alejandro F
•Feb 3, 2020
Un curso muy bueno, el instructor tiene dominio del tema y sobre todo el final del curso es muy bueno en cuestión de poner en practica la teorÃa que al principio te explica. En ocasiones el instructor va un poco rápido en los términos teóricos y puede llegar a abrumarte. Creo querÃa ideal poner más ejemplos prácticos cada que explica un concepto.
By Yix L
•Dec 20, 2019
Materials are good and Professor Andrew presents the course in the really understandable level, so I still learn a lot throughout the course even if I have taken similar mooc courses on other platforms. Programming Assignments are much easier than the fourth course (Convolutional NN), but it gives many inspiration to me. Great thanks to the team!
By Hans E
•Feb 18, 2018
Great material, very clear and pleasant teaching, good software environment for the programming exercises. The exercises are a bit boring at times (cut and paste without much thinking) but maybe this is a quick way to memorize the material...
Some long known problems in the exercises should REALLY REALLY be addressed! (would have given 5 stars)
By Marco P
•Apr 19, 2021
Great course! The labs were very useful in seeing the concepts applied in practice. Something that I think would help all the concepts and practice take hold even more would be a second lab session per week with much less guidance, where the student is required to come up with most of the algorithm themselves. Overall great and solid course!
By Guoqin M
•Jun 29, 2018
Content is great! A good introduction to a lot of hyper-parameters in neural net. However, there are some bugs in the evaluation system of programming assignments. For example, the system does not recognize Pythons '-=' operation and gave me a fail, which I did not figure out until I saw the forum where people were having the same trouble.
By Lennart M C
•Jan 14, 2022
Much better than the first course. Math is still quite shallow (simple and not going into too much detail), and programming assignments are still mostly one-liners with copy&paste. But the general techniques demonstrated throughout the course are very helpful, and the given intuition about why and how something works helps understanding.
By Malav A
•May 4, 2020
The course was very good. Things were implemented and taught well and at the correct pace. However, while completing the exercise, we can never write the whole code, we have to only edit a few lines of codes. That's not bad for a beginner, but it would have been better if a little understanding about that part of code could be given too.
By Pedram A
•Dec 1, 2021
Concepts are great and complex :) but the instructor is great at teaching complex things. The assignments weren't challenging or I can say they were too short and small for these lots of concepts: that's why I gave 4 stars. Materials In this module are not kinda continuous and that's why made this module difficult to teach and to learn.
By Michail V
•Mar 5, 2024
Very interesting course, like all courses taught by Andrew Ng, who is an excellent teacher. The only thing I found strange was the TensorFlow introduction in the end. I think that it does not fit to the course topic. In addition to this, I found the introduction very restricted. But this is a tiny part of the overall very good course.
By Nikola J
•May 19, 2018
Andrew is great at teaching. Quality of education is absolutely for 5 stars, but I am giving 4 because of technical difficulties with Jupiter notebook. Often happened that I wrote some code and it could not save, it just displayed error, so I had to copy code to my notepad and rerun the Jupiter notebook, and than copy the code back.
By Ozan G
•Aug 9, 2020
I really like the content but I believe that it is about time the final assignment of this course is updated to Tensorflow 2. There is no point in enforcing learning outdated software... For the massive revenue that this course is generating, the minimal effort to update one Jupyter Notebook should not be too much of a burden...
By Usama B N
•May 19, 2020
The course was a very focused approach towards introducing and familiarizing us with the importance of tuning hyperparameters and their impact on the performance. Although, I personally feel like the Tensorflow exercise could have been more detailed and could have used more explanation. I found that exercise somewhat confusing.
By Guoliang
•Apr 3, 2020
The explanation is just as good as the previous course. The reason I give 4 star is that the notebook use TF version 1 instead of 2. Given syntax of 1 and 2 shows great difference, at least I believe so, it would be better that the notebook can be updated. For the rest of the course, very good!!! Suitable for beginners in DL.
By Ytsen d B
•Aug 15, 2017
This course is well taught.
Andrew Ng takes you through the material without error and in a very acceptable pace.
The exercises are very do-able.
They do not challenge hard, but take you by the hand and show you how to implement and improve your neural networks.
The final assignment is a very good tutorial on TensorFlow actually :)
By Emmanuel T
•Oct 3, 2019
Compared to previous module, this one was more of a cookbook and I expected more mathematics in terms of why each optimization work.
Overall, it was still a very interesting hands on approach, finishing with TensorFlow is a bit more difficult to apprehend as all the previous exercices were done in a very different way (Numpy).
By Varun b
•Jul 5, 2022
The course content is great as always. It introduces all the concepts in consize manner. The final assignment however fairly rudimentary. Would have been more beneficial to me and perhaps other students, to go through writing the training code rather than having to figure out what tf.transpose or tf.nn.softmax functions are.