Chevron Left
Back to Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization

Learner Reviews & Feedback for Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization by DeepLearning.AI

4.9
stars
63,156 ratings

About the Course

In the second course of the Deep Learning Specialization, you will open the deep learning black box to understand the processes that drive performance and generate good results systematically. By the end, you will learn the best practices to train and develop test sets and analyze bias/variance for building deep learning applications; be able to use standard neural network techniques such as initialization, L2 and dropout regularization, hyperparameter tuning, batch normalization, and gradient checking; implement and apply a variety of optimization algorithms, such as mini-batch gradient descent, Momentum, RMSprop and Adam, and check for their convergence; and implement a neural network in TensorFlow. The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

Top reviews

AS

Apr 18, 2020

Very good course to give you deep insight about how to enhance your algorithm and neural network and improve its accuracy. Also teaches you Tensorflow. Highly recommend especially after the 1st course

HD

Dec 5, 2019

I enjoyed it, it is really helpful, id like to have the oportunity to implement all these deeply in a real example.

the only thing i didn't have completely clear is the barch norm, it is so confuse

Filter by:

6226 - 6250 of 7,249 Reviews for Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization

By chandrashekar r

Sep 12, 2017

I would rate this 4 for the following reasons:

1) Learnt all the optimizations.

2) Hyper Parameterizations

I would not rate this 5 for the following reasons:

1) Some more time could have been spent on tensorflow.

2) The assignments were just simple substitutions.

By Elpidio E G V

Apr 23, 2019

Great explanations on behind the scenes operations of optimization algorithms and general theory. Coming from a more practical background, it helped me grasp the concepts much better. I only wish the programming exercises were a little bit more challenging!

By Amir M K

Aug 27, 2022

Generaly it was good as expected! But the problem with this course was the programming assignment at week 3, where it did not include programming training for most it's content which where Hyperparameter tuning and batch norm and was all about TensorFlow!

By Ansh M

Jun 26, 2020

It was a good course, with giving a great detail on tuning the Hyperparameters. I personally didn't myself found it useful as of now, but the course was good, and can be recommended to other people to fine-tune their networks. Jumping on the third course!

By Brook R

Jan 12, 2020

Programming assignment was more difficult but the Course itself really built on the first course well. I struggled much less with the material and enjoyed it more. I also appreciate it being shorter despite having to restart because I had gone on vacation

By Prakash N

Sep 25, 2021

I liked everything except the tensorflow part of the course. That was too quick, and the last assignment IMHO was not very useful. I did it mechanically just to complete the course. A full framework course is perhaps useful as part of the specialization.

By Ed S

Sep 29, 2017

Overall very good. Many of the useful concepts did not have practical "coding" assignment.

It would have been great to have the opportunity to see how many of the tuning, regularization and optimization techniques can be mixed in a real world scenarios

By Lester A S D C

Jun 21, 2019

The course teaches you well on how to optimize your neural network. The only problem I had was with week 2's programming assignment because the grader had problems with the "-=" operation. The lecture I enjoyed the most was the Adam Optimizer lecture.

By Nicolas B

Jul 24, 2019

This is a very interresting course that go past basic deep neural network knowledge. I learned a lot. Still I would have like a bit more programming exercices to have more part of the theoretical course covered (batch norm, hyper parameters tunning).

By Tanay G

Jan 26, 2020

This course taught me a lot of new concepts and tricks to speed up the training process as well as ways to reduce overfitting and biasing in a neural network. I would've liked the course even more if the instructors took a deeper dive in frameworks.

By Akshay G

Aug 11, 2020

I learned a lot in this course but I feel like the assignments should be little big and less informative. The assignments are designed are good for then who are at base level but too short for someone who had their hands on once in neural networks.

By Joao N

Nov 4, 2019

One again the course is a great follow up from the previous one. The only little detail I wish had been done was for the assignment to cover a scenario where we had to improve some hyperparameters by applying different approaches covered in class.

By 戚运动 B Q

Apr 14, 2018

The course itself is great, but something out of the course is not so good, e.g. I can't see the video easily in China, and also the pictures in the exam can't be shown always, so I must take some guess to pass the exams, which is really a regret!

By Hanan S

Dec 16, 2017

Not like the first course which was kind of "trying not to touch the details", this course is more organized and I felt I've learned something. Still I would improve TF training to get more into the details (what does reset global variables do?!)

By Davy C

Oct 2, 2017

Interesting, but the quality of the exercises in not so good. There are at least 3-4 mistakes in the expected output that make you loose time double verifying. Mentor only seems to reply it is know, sounding like it has been like this for long...

By Nacho C

Nov 9, 2017

It mixes a review of Neural Network tuning techniques, and brief intro to TensorFlow. Those are really two very different topics, but I guess it's just designed to fill about a month of the specialization.

NOT recommended as a standalone course!

By Joaquín T S

Mar 24, 2021

This well-structured course guides you in understanding the importance of tuning hyperparameters as well as some regularization basics. I would give it 5 stars but for coding with Tensorflow < 2.0, what is really outdated in my honest opinion.

By 杨鹏程

Jul 3, 2018

This is a very good course, but the content of the hyperparameter adjustment mostly stays in the theoretical analysis. The latter experimental course does not involve how to implement the program. I hope that it will be improved in the future.

By Martin K

Dec 13, 2017

Great course. I learnt a lot again. Perhaps the programming exercises can be a little harder. Some things were quite literally spelled out which meant that you could theoretically copy/paste them into your code with only trivial adjustments.

By Mihajlo

Feb 1, 2018

I liked the optimization lectures, and Andrew's style of teaching. Anyway, I feel that I didn't learn enough in this course, and that it is not on the same level of previous courses we got used to, like the original Machine Learning course.

By Stuart H

Oct 14, 2021

A good introduction to the important details that go into training a neural network and why they are important. I appreciate how they explain it all from first principles, but I'm going to need to do some more courses to learn tensorflow.

By Faisal A

Aug 11, 2018

This course was better than the first course in the specialization. The assignments were more sophisticated (though repetitive at times) and required more thought and work. The only down side is the monotone way of presenting the material.

By Prashant M

Oct 25, 2017

Some lectures seem to have inconsistent/unexplained differences in the math written. For example, I am a bit confused as to whether normalization is done as (x - mean)/variance or (x - mean)/std.dev. Otherwise, excellent content as always!

By K S

Jun 5, 2021

In some other courses there was a pdf document at the end of the courses which very good if you want revisit them but in these courses its not available. Please make them available here which will be a very time saving for quick revisions

By Tianyi L

Nov 19, 2017

In overall, the course content is helpful and inspiring as normal, and can be used to real life straight away. However there are several typos/mistakes in the assignment, especially in assignment 3 which I had bad time to experience with.