This course is a capstone assignment requiring you to apply the knowledge and skill you have learnt throughout the specialization. In this course you will choose one of the areas and complete the assignment to pass.
Capstone Assignment - CDSS 5
Dieser Kurs ist Teil von Spezialisierung Informed Clinical Decision Making using Deep Learning
Dozent: Fani Deligianni
Bei enthalten
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
3 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 3 Module
This is an advanced exercise/lesson that combines knowledge from the three earlier modules: 1) 'Data mining of Clinical Databases' to query the MIMIC database, 2) 'Deep learning in Electronic Health Records' to pre-process EHR and build deep learning models and 3) 'Explainable deep learning models for healthcare' to explain the models decision. In particular, permutation feature importance is implemented and applied on MIMIC-III extracted datasets. The technique is applied both on logistic regression and on an LSTM model. The explanations derived are global explanations of the model.
Das ist alles enthalten
3 Lektüren1 Aufgabe
This is an advanced exercise/lesson that combines knowledge from the three earlier modules: 1) 'Data mining of Clinical Databases' to query the MIMIC database, 2) 'Deep learning in Electronic Health Records' to pre-process EHR and build deep learning models and 3) 'Explainable deep learning models for healthcare' to explain the models decision. In particular, LIME is applied on MIMIC-III extracted datasets. The technique is applied on both logistic regression and an LSTM model . The explanations derived are local explanations of the model.
Das ist alles enthalten
2 Lektüren1 Aufgabe
This is an advanced exercise/lesson that combines knowledge from the three earlier modules: 1) 'Data mining of Clinical Databases' to query the MIMIC database, 2) 'Deep learning in Electronic Health Records' to pre-process EHR and build deep learning models and 3) 'Explainable deep learning models for healthcare' to explain the models decision. In particular, GradCam is implemented and applied on an LSTM model that predicts mortality based on MIMIC-III extracted datasets. The explanations derived are local explanations of the model.
Das ist alles enthalten
1 Lektüre1 Aufgabe
Dozent
Empfohlen, wenn Sie sich für Machine Learning interessieren
University of Cape Town
Coursera Project Network
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.