University of Colorado Boulder
Statistics and Data Analysis with R

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
University of Colorado Boulder

Statistics and Data Analysis with R

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 24 Stunden
3 Wochen bei 8 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 24 Stunden
3 Wochen bei 8 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Use statistical functions in RStudio to solve problems related to discrete and continuous probability distributions.

  • Create simple linear, polynomial, and multilinear regression models in RStudio and use those models to make predictions.

  • Perform one-sample and two-sample hypothesis tests and create confidence and prediction intervals on various statistics.

Kompetenzen, die Sie erwerben

  • Kategorie: Model Building
  • Kategorie: Data Analysis
  • Kategorie: Statistical Hypothesis Testing
  • Kategorie: Probability and Statistics
  • Kategorie: Probability And Statistics
  • Kategorie: RStudio

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

Dezember 2024

Bewertungen

6 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter

Erweitern Sie Ihre Fachkenntnisse

Dieser Kurs ist Teil der Spezialisierung Spezialisierung Statistics and Applied Data Analysis
Wenn Sie sich für diesen Kurs anmelden, werden Sie auch für diese Spezialisierung angemeldet.
  • Lernen Sie neue Konzepte von Branchenexperten
  • Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
  • Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
  • Erwerben Sie ein Berufszertifikat zur Vorlage
Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 6 Module

Welcome to "Statistics and Data Analysis with R"! In this week, you will be introduced to R and RStudio and will learn how to install and navigate RStudio. You will then learn how to perform basic calculations, use script files, create and work with vectors and matrices, and install and load add-on packages. Finally, you will learn all about data frames and tibbles, how to import data from external files (.xlsx, .csv, and .txt files), and how to work with built-in and user-defined functions. When you are ready, you must pass the Week 1 Graded Quiz in order to access the Week 2 Starter Files and Cheat Sheet. You will need access to these items in order to complete Module 2. You must also pass Assignment 1, which counts towards the final grade in the course.

Das ist alles enthalten

14 Videos5 Lektüren1 Aufgabe1 Programmieraufgabe2 Diskussionsthemen

In Week 2, you'll learn how to calculate common descriptive statistics in R, how to calculate conditional statistics, and how to present data in a graphical manner (scatter plots, column plots, and pie plots). You'll also learn how to create boxplots and probability plots in R and how to analyze the normality of the data using the Anderson-Darling statistic. Week 2 has 9 screencasts with many in-video questions to test your understanding of the material and help you learn. The week ends with a hands-on Assignment 2, which you will complete in a Jupyter notebook in the programming language R and that counts towards your final grade in the course. When you are ready, you must pass the Week 2 Graded Quiz in order to access the Week 3 Starter Files and Cheat Sheet. You will need access to these items in order to complete Module 3. Best of luck to you this week! As always, if you have questions or issues, please initiate a discussion thread and either myself or someone else will chime in with some help.

Das ist alles enthalten

9 Videos1 Lektüre1 Aufgabe1 Programmieraufgabe1 Diskussionsthema

In Week 3, you'll learn all about probability and counting rules in R, including how to calculate combinations and permutations, how to calculate probabilities associated with common discrete probability distributions (binomial, geometric, negative binomial, hypergeometric, Poisson distributions), and how to calculate probabilities associated with common continuous probability distributions (uniform, normal, T, chi-squared, and F distributions) in R. You will also perform inverse normal distribution calculations and their associated z-values (standardization). Week 3 has 14 screencasts with many in-video questions to test your understanding of the material and help you learn. The week ends with Assignment 3 in which you will perform several calculations in a Jupyter notebook. Assignment 3 counts towards your final grade in the course. When you are ready, you must pass the Week 3 Graded Quiz in order to access the Week 4 Starter Files and Cheat Sheet. You will need access to these items in order to complete Module 4. Best of luck to you this week! As always, if you have questions or issues, please initiate a discussion thread and either myself or someone else will chime in with some help.

Das ist alles enthalten

16 Videos1 Lektüre1 Aufgabe1 Programmieraufgabe1 Diskussionsthema

In Week 4, you'll learn all about how to calculate one-sample statistics in R. You will begin the week by learning how to calculate confidence and prediction intervals on the mean, variance, and binomial proportion. Then, you will learn how to perform hypothesis tests on the mean, variance, and a binomial proportion. You will also learn how to calculate the power and probability of a type II error in R, which is related to sample size considerations, which you will also explore. Week 4 has 10 screencasts with many in-video questions to test your understanding of the material and help you learn. I encourage you to download and make use of the Week 4 Cheat Sheet (for those who purchase a Course Certificate) as this will help distill the challenging concepts and R functions that are found in this week's material. Week 4 concludes with Assignment 4, which you will complete in the R programming language in a Jupyter notebook and that counts towards your final grade in the course. When you are ready, you must pass the Week 4 Graded Quiz in order to access the Week 5 Starter Files and Cheat Sheet. You will need access to these items in order to complete Module 5. Quiz 4 requires you to perform statistical calculations in R, so be sure to prepare accordingly.

Das ist alles enthalten

12 Videos1 Lektüre1 Aufgabe1 Programmieraufgabe1 Diskussionsthema

In Week 5, you'll learn all about two-sample comparisons. You will calculate confidence intervals related to and hypothesis tests involving the comparison of means, comparison of variances, and comparison of binomial proportions. The type of test that is performed depends on whether variance is known or unknown, which you will also explore. Week 5 has 7 screencasts with many in-video questions to test your understanding of the material and help you learn. The week concludes with Assignment 5. When you are ready, you must pass Quiz 5 in order to continue in the course. You will also want to pay close attention to the Week 5 Cheat Sheet (available to learners who purchase a Course Certificate) as this will serve as a great reference for Assignment 5 and Quiz 5. When you are ready, you must pass the Week 5 Graded Quiz in order to access the Week 6 Starter Files and Cheat Sheet. You will need access to these items in order to complete Module 6. Quiz 5 requires you to perform statistical calculations in R, so be sure to prepare accordingly.

Das ist alles enthalten

7 Videos1 Lektüre1 Aufgabe1 Programmieraufgabe1 Diskussionsthema

In Week 6, you'll learn all about creating simple linear, polynomial, and multilinear regression models, which basically are mathematical relationships between input variables (regressor variables) and an output variable (response). You will learn how to calculate confidence intervals on and perform hypothesis tests on model parameters and you will learn how to select the best possible regression model from several candidate models using backward elimination. Finally, you will learn how to perform analysis of variance (ANOVA) when you have more than two groups to compare. Week 6 has 9 screencasts with many in-video questions to test your understanding of the material and help you learn. The week concludes with Assignment 6. When you are ready, you must pass Quiz 6 in order to continue in the course. You will also want to pay close attention to the Week 6 Cheat Sheet (available to learners who purchase a Course Certificate) as this will serve as a great reference for Assignment 6 and Quiz 6. Quiz 6 requires you to perform statistical calculations in R, so be sure to prepare accordingly. Once you've completed Week 6, you'll be done with the course!

Das ist alles enthalten

9 Videos1 Aufgabe1 Programmieraufgabe1 Diskussionsthema

Dozent

Charlie Nuttelman
University of Colorado Boulder
9 Kurse433.823 Lernende

von

Empfohlen, wenn Sie sich für Probability and Statistics interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen