You’re almost there! This is the seventh and final course of the Google Advanced Data Analytics Certificate. In this course, you have the opportunity to complete an optional capstone project that includes key concepts from each of the six preceding courses. During this capstone project, you'll use your new skills and knowledge to develop data-driven insights for a specific business problem.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Google Advanced Data Analytics Capstone
Ce cours fait partie de Google Advanced Data Analytics Certificat Professionnel
Instructeur : Google Career Certificates
Enseignant de premier plan
41 815 déjà inscrits
Inclus avec
(928 avis)
Ce que vous apprendrez
Examine data to identify patterns and trends
Build models using machine learning techniques
Create data visualizations
Explore career resources
Compétences que vous acquerrez
- Catégorie : Data Analysis
- Catégorie : Python Programming
- Catégorie : Machine Learning
- Catégorie : Technical Interview Preparation
- Catégorie : Executive Summaries
Détails à connaître
Ajouter à votre profil LinkedIn
8 quizzes
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise en Data Analysis
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable auprès de Google
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 3 modules dans ce cours
To start, you’ll be provided with an overview of the optional capstone project and how it differs from the end-of-course projects. You’ll also receive helpful suggestions for successfully completing the capstone project. Finally, you'll learn how to incorporate your completed capstone project into your professional portfolio.
Inclus
3 vidéos5 lectures3 quizzes2 laboratoires non notés
You’ll review data-focused career resources designed to help you effectively navigate the job market. You'll also get useful tips for polishing your resume and preparing for interviews.
Inclus
10 vidéos7 lectures4 quizzes
You’ll complete the final tasks necessary to earn your Google Advanced Data Analytics Certificate badge. Congratulations!
Inclus
2 vidéos3 lectures1 quiz1 plugin
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Data Analysis
University of Illinois Urbana-Champaign
- Statut : [object Object]
Johns Hopkins University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
Affichage de 3 sur 928
928 avis
- 5 stars
87,84 %
- 4 stars
10,21 %
- 3 stars
1,18 %
- 2 stars
0,43 %
- 1 star
0,32 %
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Organizations of all types and sizes have business processes that generate massive volumes of data. Every moment, all sorts of information gets created by computers, the internet, phones, texts, streaming video, photographs, sensors, and much more. In the global digital landscape, data is increasingly imprecise, chaotic, and unstructured. As the speed and variety of data increases exponentially, organizations are struggling to keep pace.
Data science and advanced data analytics are part of a field of study that uses raw data to create new ways of modeling and understanding the unknown. To gain insights, businesses rely on data professionals to acquire, organize, and interpret data, which helps inform internal projects and processes. Data scientists and advanced data analysts rely on a combination of critical skills, including statistics, scientific methods, data analysis, and artificial intelligence.
A data professional is a term used to describe any individual who works with data and/or has data skills. At a minimum, a data professional is capable of exploring, cleaning, selecting, analyzing, and visualizing data. They may also be comfortable with writing code and have some familiarity with the techniques used by statisticians and machine learning engineers, including building models, developing algorithmic thinking, and building machine learning models.
Data professionals are responsible for collecting, analyzing, and interpreting large amounts of data within a variety of different organizations. The role of a data professional is defined differently across companies. Generally speaking, data professionals possess technical and strategic capabilities that require more advanced analytical skills such as data manipulation, experimental design, predictive modeling, and machine learning. They perform a variety of tasks related to gathering, structuring, interpreting, monitoring, and reporting data in accessible formats, enabling stakeholders to understand and use data effectively. Ultimately, the work of data professionals helps organizations make informed, ethical decisions.
Large volumes of data — and the technology needed to manage and analyze it — are becoming increasingly accessible. Because of this, there has been a surge in career opportunities for people who can tell stories using data, such as senior data analysts and data scientists. These professionals collect, analyze, and interpret large amounts of data within a variety of different organizations. Their responsibilities require advanced analytical skills such as data manipulation, experimental design, predictive modeling, and machine learning.