In this course, we build on previously defined notions of the integral of a single-variable function over an interval. Now, we will extend our understanding of integrals to work with functions of more than one variable. First, we will learn how to integrate a real-valued multivariable function over different regions in the plane. Then, we will introduce vector functions, which assigns a point to a vector. This will prepare us for our final course in the specialization on vector calculus. Finally, we will introduce techniques to approximate definite integrals when working with discrete data and through a peer reviewed project on, apply these techniques real world problems.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Calculus through Data & Modelling: Techniques of Integration
Dieser Kurs ist Teil von Spezialisierung Integral Calculus through Data and Modeling
Dozent: Joseph W. Cutrone, PhD
TOP-LEHRKRAFT
1.858 bereits angemeldet
Bei enthalten
(30 Bewertungen)
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
3 Quizzes
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 4 Module
In this module, we extend the idea of a definite integral to double and even triple integrals of functions of two or three variables. These ideas are then used to compute areas, volumes, and masses of more general regions. Double integrals are also used to calculate probabilities when two random variables are involved. This extension of single variable calculus is the first step towards major tools that arise later in this specialization involving theorems of vector calculus.
Das ist alles enthalten
1 Video2 Lektüren1 Quiz
For integrals of a function f(x), the region over which we integrate is always an interval of the real line. But for double integrals, we want to expand our abilities to integrate a multivariable function f(x,y) not only over rectangles, but also over more general regions in the plane. In this module, we develop the tools and techniques to do that.
Das ist alles enthalten
1 Video2 Lektüren1 Quiz
A vector-valued function, also referred to as a vector function, is a mathematical function of one or more variables whose range is a set of multidimensional vectors or infinite-dimensional vectors. The input of a vector-valued function could be a scalar or a vector, but the output of this function is a vector. In this way, points are assigned to vectors. In this module, we will study these new types of functions and develop examples and applications of these new mathematical objects. They will play a key part in the development of vector calculus in future modules.
Das ist alles enthalten
1 Video2 Lektüren1 Quiz
Despite the broad algebraic tools we have learned to find antiderivatives and evaluate definite integrals using the Fundamental Theorem of Calculus, there are times when using antiderivatives is not possible. This could be because the function is too complicated in a way where no nice antiderivative exists, or that we are working with discrete data instead of a continuous function. In this module we introduce the notions and algorithms of numerical integration, which allow us to estimate the values of definite integrals. This is the basic problem we seek to solve: compute an approximate solution to a definite integral to a given degree of accuracy. There are many methods for approximating the integral to the desired precision, and we introduce a few here.
Das ist alles enthalten
1 Video1 Lektüre1 peer review
Dozent
Empfohlen, wenn Sie sich für Math and Logic interessieren
DeepLearning.AI
École normale supérieure
Illinois Tech
Johns Hopkins University
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Bewertungen von Lernenden
Zeigt 3 von 30
30 Bewertungen
- 5 stars
80 %
- 4 stars
10 %
- 3 stars
6,66 %
- 2 stars
0 %
- 1 star
3,33 %
Geprüft am 1. Apr. 2024
Geprüft am 23. Mai 2024
Geprüft am 24. Sep. 2023
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.