Understanding the importance of Python as a data science tool is crucial for anyone aspiring to leverage data effectively. This course is designed to equip you with the essential skills and knowledge needed to thrive in the field of data science.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Python for Data Science
Ce cours fait partie de Fractal Data Science Certificat Professionnel
Instructeur : Fractal Analytics
2 312 déjà inscrits
Inclus avec
(35 avis)
Expérience recommandée
Ce que vous apprendrez
Explain the significance of Python in data science and its real-world applications.
Apply Python to manipulate and analyze diverse data sources, using Pandas and relevant data types
Create informative data visualizations and draw insights from data distributions and feature relationships
Develop a comprehensive data preparation workflow for machine learning, including data rescaling and feature engineering
Compétences que vous acquerrez
- Catégorie : Data cleaning and preprocessing
- Catégorie : Data Analysis
- Catégorie : Feature Engineering
- Catégorie : Data transformation
- Catégorie : Exploratory Data Analysis
Détails à connaître
Ajouter à votre profil LinkedIn
17 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise en Data Analysis
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable auprès de Fractal Analytics
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 5 modules dans ce cours
In the first module of the Python for Data Science course, learners will be introduced to the fundamental concepts of Python programming. The module begins with the basics of Python, covering essential topics like introduction to Python.Next, the module delves into working with Jupyter notebooks, a popular interactive environment for data analysis and visualization. Learners will learn how to set up Jupyter notebooks, create, run, and manage code cells, and integrate text and visualizations using Markdown. Additionally, the module will showcase real-life applications of Python in solving data-related problems. Learners will explore various data science projects and case studies where Python plays a crucial role, such as data cleaning, data manipulation, statistical analysis, and machine learning.By the end of this module, learners will have a good understanding of Python, be proficient in using Jupyter notebooks for data analysis, and comprehend how Python is used to address real-world data science challenges.
Inclus
12 vidéos6 lectures2 devoirs
By the end of this module, learners will acquire essential skills in working with various types of data. They will have a solid grasp of Python programming fundamentals, including data structures and libraries. They will be proficient in loading, cleaning, and transforming data, and will possess the ability to perform exploratory data analysis, employing data visualization techniques. They will also gain insights into basic statistical concepts, such as probability, distributions, and hypothesis testing.
Inclus
32 vidéos4 lectures6 devoirs2 devoirs de programmation5 laboratoires non notés
By the end of this module, learners will gain a comprehensive understanding of statistical concepts, data exploration techniques, and visualization methods. Learners will develop the skills to identify patterns, outliers, and relationships in data, making informed decisions and formulating hypotheses. Ultimately, they will emerge with the ability to transform raw data into meaningful insights, effectively communicate their findings through data storytelling, and apply EDA across diverse real-world applications.
Inclus
34 vidéos1 lecture5 devoirs1 devoir de programmation4 laboratoires non notés
By the end of this module, learners will acquire the essential skills to effectively transform raw and often messy data into a structured and suitable format for advanced analysis. They will master the techniques for handling missing values, identifying and dealing with outliers, encoding categorical variables, scaling and normalizing numerical features, and handling textual or unstructured data. Learners will also be proficient in detecting and addressing data inconsistencies, such as duplicates and errors. Learners will be able to treat data to make it suitable for further analysis. Upon completion of this module, Upon completion
Inclus
25 vidéos2 lectures3 devoirs1 devoir de programmation3 laboratoires non notés
By the end of this module, learners will develop a profound understanding of how to craft and enhance features to optimize the performance of machine learning models. They will be adept at identifying relevant variables, creating new features through techniques such as one-hot encoding, binning, and polynomial expansion, and extracting valuable information from existing data, like dates or text, using methods like feature extraction and text vectorization. Learners will also grasp the concept of feature scaling and normalization to ensure the consistency and comparability of feature ranges. With these skills, they will possess the ability to shape data effectively, amplifying its predictive power and contributing to the construction of robust, high-performing machine learning pipelines.
Inclus
11 vidéos2 lectures1 devoir1 devoir de programmation1 laboratoire non noté
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Data Analysis
Duke University
Coursera Project Network
Nanjing University
Corporate Finance Institute
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
Affichage de 3 sur 35
35 avis
- 5 stars
74,28 %
- 4 stars
8,57 %
- 3 stars
0 %
- 2 stars
0 %
- 1 star
17,14 %
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.